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We propose a self-consistent nonlocal approach for the description of vortices in layered supeconductors that
contain planar defects parallel to the layers. The model takes account of interlayer Josephson coupling and of
a reduced maximum Josephson current denjgjtacross the defect as comparedjtofor other interlayer
junctions. Analytical formulas that describe the structure of both static and moving vortices, including the
nonlinear Josephson core region, are obtained. Within the framework of the model, we have calculated the
lower critical fieldH,, vortex masdM, viscous drag coefficient, and the nonlinear current-voltage charac-
teristic V(j) for a vortex moving along planar defects. It is shown that for identical junctipfss j;) our
approach reproduces results of Clem, Coffey, and Htys. Rev. B42, 6209(1990; 44, 2732(199)); 44,

6903 (1991)] for u, M, andH;. In the opposite limitj;<<j,, our model gives an Abrikosov vortex with
anisotropic Josephson core described by a nonlocal Josephson electrodynamics. A sign change in the curvature
of V(j) is shown to occur due to a crossover between underdaniped () and overdamped =T, dynamics

of interlayer junctions as the temperatureis increased. Implications of the results on ttvaxis current
transport in high¥, superconductors are discussg8l0163-18206)02042-3

I. INTRODUCTION thin superconducting layers coupled by the Josephson
interaction** Another model is theS-N-S superlattice con-
The discovery of high-temperature superconductingsisting of alternating superconductin®)(and normal N)
(HTS) oxides has renewed considerable interest in the propayers®~*215An important feature of such models is that, due
erties of vortex structures in highly anisotropic super-to weak Josephson interlayer coupling, the maximum super-
conductors. Characteristic features of these materials in-current densityj, between the layers is much smaller than
clude the noncollinearity of flux lines and applied magneticthe intralayer depairing current density. As a result, the
field H,2~* fragmentation of line vortices into quasi-two di- maximum current density that can be locally generated by a
mensional pancake vorticegind formation of kinks on the vortex parallel to the layers is limited Ky, and therefore the
flux lines if H is not parallel to the symmetry axBsThe = magnitude of the order parameter remains the same in all
structure of a single fluxon essentially changesHaparallel  layers, including the layers closest to the vortex axis. This
to the superconducting planes as well, due to weak interplanenables one to use linear two-dimensiofzdd) London elec-
coupling, which results in a strong deformation of the vortextrodynamics within the layers and retain only the most es-
coré “*? and additional intrinsic pinning® sential Josephson nonlinearity of the interplane current den-
Depending on the degree of anisotropy, different theoretisity joSing,. The resulting equations that describe the
cal models are used for the description of vortex structure. Adistributions ofj(r) andb(r) in the vortex can be expressed
moderate anisotropy, the linear London theory is used, whicln terms of an infinite set of coupled sine-Gordon equations
ignores the layered structure of a superconductor but takeder the gauge-invariant phase differencesp,(r)
into account its anisotropy via an effective mass teAsbr. (n=0,=1,=2,...) across the junctions between supercon-
This approach, valid as long as the coherence leggte-  ducting layerd®'” These nonlinear difference equations,
mains much larger than the atomic length scales, enables o@sed only on the Josephson relations and Maxwell equa-
to describe the distribution of screening currents everywhergons, are insensitive to the microscopic mechanism of super-
in the vortex except in the vicinity of the normal core, where conductivity.
one has to invoke nonlinear equations for the superconduct- Although obtaining single-vortex solutions of the equa-
ing order parameter. tions for ¢,(r) is a fairly complicated mathematical prob-
In highly anisotropic layered superconductors or artificiallem, a qualitative description of a vortex parallel to the layers
superlattices the interlayer superconducting coupling can bproves to be similar to that of an Abrikoso) vortex!®
so weak that the coherence length in the direction perperNamely, there is an outer region of circulating screening cur-
dicular to the layers, becomes smaller than the interlayer rents which flow around the vortex axis and decay exponen-
spacings. In this case, the discreteness of the superconductdially in the directions parallel | axis) and perpendicular
at the atomic level dramatically affects the structure of the(z axis) to the layers. Here the phases,(r) change
vortex core’ 12 There are several models that take accounsmoothly over the interlayer spacirsg and the LD model
of the layered structure of a superconductor, for example, theeduces to the London equation with some effective penetra-
Lawrence-DoniachLD) model, which describes a stack of tion depths\, and\,. Furthermore, there is a central non-
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linear core region where,(r) varies significantly over the 4
length ~s, with the phasesp,(r) on the different layers
being coupled via the long-rangever scales\>s) mag-
netic fieldb(r). Here the discreteness of the superconductor
becomes essential, and the long-range interactiop,0f)
across the different layers ultimately results in a nonlocal 3s
relation between the interlayer currejft) and the phase

4s

gradientV ¢, (r). =
Such a nonlocality caused by the long-range magnetic s
coupling occurs if the phasg(r) changes on a scale shorter 0
than that ofb(r). This, for example, can occur in a single Y

high-j, Josephson contact in the strong-coupling limit for
which the Josephson penetration depthbecomes smaller
than\ and the local Josephson electrodynamics based on the 25
sine-Gordon equation becomes invalid. In this case the con-
tact is described by integral equations of nonlocal Josephson
electrodynamic$~23which can also describe the interaction wr
of A vortices with planar crystalline defecAnother ex-
ample is weak links in thin films of thicknegb<\, where
the Josephson nonlocality is strongly enhanced by the large
penetration depth\.s=\?/d due to long-range magnetic
fields outside the filn¥ 2° Therefore, the Josephson nonlo-
cality results from a long-range magnetic fidddwhich can ) ) ) .
be due to both superconducting properties of the contact and First we obtain a set of coupled nonlinear integral equa-
the sample geometry. A similar situation occurs for vorticedions which describe the distribution of the phase dlﬁere_nces
in layered superconductors, since the Josephson core size can() across the layers. Then we propose a self-consistent
be comparable with the interlayer spac®and nonlocality meap-ﬂeld approach, Whlc_h enables one to obtain static and
occurs ifs<\ 1% which holds in HTS oxides, if one treats MoVing single-vortex solutions that describe both the circu-
s as a distance between the Guflanes 6~ 10 A), or typi- lating curre_nts apd the vortex. core. For a stack of identical
cal planar defects, say, twins in the ab planes or stackinffYers (o=jo) this approach in the static case reproduces
faults perpendicular to the axis (s~100—1000 A.3* the results of Clem, Coffey, and H§8,§nd decribes a cross-
Due to the short coherence lengi<s in layered HTS ~ OVer between an Abrikosov vortex with a highly anisotropic
oxides, planar defects parallel to thé planes can strongly JosephsonJ) core and a purd vortex if j is decreased
reduce interlayer coupling, thus limiting the current flow from jo~jo to jo<jo. Making use of these solutions, we
along thec axis and enhancing the magnetic field penetratiorcalculate the lower critical fielt,, vortex mass, mobility,
along the defects. This may be essential for the interpretatiodnd the nonlinear voltage-current characteristics for a vortex
of current transport along the axis in HTS oxides, which moving along a planar defect. Implications for theaxis
often contain numerous planar defects parallel to de  transport in layered HTS oxides are discussed.
planes(stacking faults, intergrowths of lo; phases, etg

FIG. 1. Sketch of the geometry of the layered superconductors.

At small &, these defects can strongly reduce the local Il. MODEL AND MAIN EQUATIONS
maximum supercurrerj, as compared tg,, thus becoming S
a significant limiting factor for the-axis current transport, ~ We model a layered superconductor as a periodic infinite

which may be determined by vortex dynamics and pinningstack of thin nonsuperconductindN) layers of thickness
along defects rather than by the inherent interlayer Josephsét<s embedded in an anisotropic superconductisy na-
coupling. Recently, this problem has attracted much attentioffix characterized by the uniaxial tensor of magnetic penetra-
due to the observation of an intrinsic Josephson effect whickion depths\ .z (Fig. 1). One of the orthogonal principal
may clarify the nature of the interlayer coupling in HTS axesz of A,z is perpendicular to the layers, which are situ-

oxides¥ The c-axis current transport can also play an im- ated atz,=ns, n=0,21,*2, ..., and theprincipal values
portant role in determining the current-carrying capability ofOf N,z are A,,=X\; and A=\, =N\, respectively. The
Bi-based tape®>3* subscripts on these principal valuesofcorrespond to the

In this paper we apply the nonlocal Josephson electrodysupercurrent direction. For example, induced screening cur-
namics to describe both a static and a moving vortex at plaent flowing in the superconducting matrix only in theli-
nar defect in layered superconductors, assuming that the vorection decays exponentially over the length. It is as-
tex and the defects are parallel to the planes, and that treumed that theN layers can be considered as planar
critical current density across the defggtdiffers from the ~ Josephson contacts, all layers but the central ame Q)
interlayer critical current density,. This case, for example, having the same critical current density. The layer with
corresponds to a vortex parallel to the plane in HTS ox- Nn=0 represents a planar defect which has a critical current
ides in the presence of a stacking fault or a vortex in a sudensityj, smaller thanj,. We are interested in the depen-
perconducting superlattice in a longitudinal magnetic field.dence of the properties of a vortex localized at the defect
The paper is organized as follows. upon j, and the parameters of the superconductor. Before
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deriving the integral equations for the phase distribution
¢en(r), we consider the linear screening in the layered super-
conductor shown in Fig. 1 and obtain formulas for effective

magnetic penetration deptig and\ ,, needed later on.

A. Linear screening
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ik popcosty(z—s/2)

O(2) =~ =\ Zgsini(qs2)

)

with q=(1+k®\2)Y?\,. From Eq.(7), we can calculate
the Fourier transform of the component of the current den-
sity j, j,(z2)=—ikecb(2)/47, and evaluate it ar=0 or

In this section we calculate the macroscopic magneti@—S: Wherej;(0) should be equal to the Josephson current

penetration depths, and) , in the case of the magnetic fiel
b directed along the axis (parallel to the layers in Fig.)1
For instance, ifb(y,z) changes only along the axis, such
that the current density flows only parallel to thexis, the
penetration depth just coincides with\;,, since the thick-
ness of theN layers is much less than that of tBdayers!

We next consider the case for whiblly,z) is periodic along

the z direction [b(y,z)=b(y,z+s)], but decays exponen-

tially along they axis over the penetration depk associ-
ated with currents perpendicular to thelayers which de-

pend onj,. To calculateh,, we consider variations of

b(y,z) described by the London equation

,9%b
)\Ca_yZ—H\

2
29D

_ b0 den
b__ﬂn 2y 8(z—ns), (1)

where ¢,(y) is the gauge-invariant phase difference of the

superconducting order parameter across ritte Josephson
contact. Here the right-hand side of Ed) ensures the well-
known boundary condition on the layers®

den 8772)\g ) o i 0 5
oy —T%[Jy(y,nSwL )—Jy(y,ns—0)]. 2
Indeed, if we integrate Eq(l) over z from z=ns—0 to
z=ns+0 and use the continuity df at z=ns, we obtain

db(y,ns+0) db(y,ns=0) ¢y Jdo,
gz 9z 2m\ioay’

3

By expressingib/dz in Eq. (3) in terms ofj, by the Max-
well equationdb/ 9z=4mj, /c, we recover Eq(2). Here the

thickness of theN layers is assumed to be negligible com-

pared withs and\.. We also Fourier transform Eql) in
y, taking into account that fds(y,z+s) =b(y,z) the gauge-
invariant phase differences,(y) are the same for ah. In
terms of the Fourier components

©

e(y)e Wdy,

o= byse v ay, o |

4
Eg. (1) and the boundary conditiof8) take the form
2141 21,2 |k¢0
bk — (1+AIKAb=— 5= > d(z=ns),  (5)
n
' ’ Ik¢0
bk(ns+0)—bk(ns—0)=—m¢k, (6)

where the prime denotes differentiation with respectzto
Since the solutions of Eq$5) and(6) are periodic inz, we
consider only the domain<©z<s, for which

g densityj;=josing through the contact. In the regime of lin-

ear screening |{;|<j,), we havej;=jq¢«; by equating
jz1(0) toj;(k), we obtain the self-consistency condition

k?poc .
16m°\2qtanhqs/2) Jo-

®

Although in Eq.(4) we have allowed for arbitrary values of
k, Eg. (8) has in fact only two rootk= *i/\,(s), which
correspond to the solutions which vary exponentially along
the y direction over the penetration depth,(s). While
\,(s) can be determined numerically from E@®) for arbi-
trary s, it is more convenient to express this relationship in
terms of the inverse functios(\,(s)), given by

A A VNZ—N2+N2
S(\) = s In| 2, ©)
\/)\z_)\c )\Z\/)\z_)\c_)\.]
where
CQSO 1/2
N= ( 1672\5)o (10

Now we consider some limiting cases. In the weak-coupling
limit A\,>\., Eq.(9) yields

\,= )\Jcothm( i) . (11)

2Np

Hence it follows that the length ,(s) decreases as in-
creases, approaching ats>\,. At smalls<\,, Eq.(11
give36

N :( C¢O 1/2
z 8 Sjo ’

(12
Equation(11) is valid if A;>\..! Using Eq.(10), we find
that the inequalityA ;>\, can be written in the form of
jo<i, where

Coo

T 167NN, (13

i
For jo>], the Josephson penetration depth;)( becomes

smaller than\ ., which corresponds to a nonlocal Josephson
electrodynamics for a single contdgt.

B. Nonlinear equations for ¢,

In this section we derive integral equations {gy(y) that
take into account the long-range magnetic coupling of the
layers and the nonlinearity of the Josephson interlayer cur-
rents. This can be done by means of the Green function
G(r,r’) of Eq. (),



1 2

2’77)\b)\

(z—2")
N

(y=y')?
NG

G(rr')=

1/2
| )
: (14

whereK, is a modified Bessel function. From Ed4) and
(14), we obtain the field distributiob(y,z) in the form

¢
b(y,2)=4772—)\0b)\c
°° (y-w? (z-m9?|*? sp,
X2 foO([ N2 N2 a0 du
(15

In order to get the equations far,(y), we use the Max-
well equation

Ch? #%¢,
4e’ gt?
(16)

c db(y,ns)
4w oy

i den
2eR ot

=jonSiNen+

where the right-hand side represents the sum of the Josep
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o) Lﬁdylffwdyz

<K (Yi—Y2)?  (n—m)?s21Y2\ 9o, (y1) don(Ya)
0 A2 A2 ay, 3y,
‘9‘Pn(y 7)
-2 f dy[ﬁn(l cowy»——(T)
(21)

Here the first term in the right-hand side of EQ1) de-
scribes the magnetic energy and the kinetic energy of super-
conducting currents inS layers. The diagonal terms
(m=n) correspond to self-energy, while the off-diagonal
terms describe the magnetic interactions between different
layers. The second term describes the Josephson energy, and
the third one corresponds to the energy of the electric field
stored in the Josephson contacts. The Lagrange form can be
useful when describing dynamics of Josephson vortices at
low temperatures, for example, for calculation of quantum
flux creep in layered superconductdfs.

son, resistive, and displacement current densities through the

nth N layer, R and C are the specific interlayer resistance
and capacitance, respectively, ane is the electron charge.
Substituting Eq(15) into Eq. (16) and integrating by parts,
we arrive at the following equations far,(y):

Pen E (y U)2 (n—m)?s?|172
&’T )\b
(92
X o du singy, . a7
Herer=tw; is the dimensionless timey;=(2ej,/AC)?is

the Josephson plasma frequengys 1/RCw is the dimen-

sionless damping constant due to the resistive currents, ar,

I, is the characteristic nonlinear screening length,

Coo

1672 oA ph e (18)

|0:

When deriving Eq.(17), we assumed that all contacts are
identical. In the case of thH layers with differentj,,, the
stationary equations fap,(y) become

2 [

= BnSing,,

(n _ m)252 1/2

2
Ap

azﬁom

(y— U)2
02 du

(19

C. Mean-field approach

In the general case, the nonlinear integral equatl@is
very complicated, and so we consider here a mean-field ap-
proach which enables one to obtain analytical single-vortex
solutions fore,(y) andb(y,z). We consider here the most
interesting cases<\,., for which the magnetic field
b(y,z) varies smoothly over the interlayer spacing, and the
vortex has two characteristic regions similar to those of an
A vortex. First there is a core region much smaller than
Ny, Where the phase,(r) changes over the lengtks,
and the current density is of the order jgf Here both the
discreteness of the superconductor and the nonlinearity of
the interlayer Josephson currents become very important.
rthermore, there is a region of circulating screening cur-
rents which decay exponentially over the lengkysand\,
along thez andy axes, respectively. In this region the phase
differencese,(r) are small and change slowly over the in-
terlayer spacing, angr) is much smaller than,. This re-
gion can be described by the linear London equation with the
above effective penetration depthg and\ ,,

, b b )
2 —_ _0 i
AN— a2 Ny Sz 5( ) (22

where the right-hand side of E(R2) results from the vortex
core located at the central defect layen=0) and
o(Y)=op(y). Since the phase(y) in the vortex changes
the derivative

whereB,=jon/jo, andj, is the mean value gfy,. We shall  from 0 to 27 asy runs from —< to 8 _
use Eq(19) for the description of a vortex on a single-defect d¢/dy in Eq. (22) can be replaced by25(y) at distances
N layer (n=0), which has a reduced critical current density from the core much larger than its size. Then E2zp) re-

JO<JO Notice that Eqs(l?) (19) can be obtained from the duces to the well-known London equatlon for Arvortex in
variational principle an anisotropic uniform superconductor. However, there is a

qualitative difference between the normal core offanor-

tex and the Josephson core of the vortex in the layered su-
perconductors. For aA vortex, the core appears because of
the suppression of the superconducting order parameter,
where S= [£dr is the dimensionless action, and the La- since the screening current density at its center attgin$
grangian £ is given by By contrast,j(r) in the vortex in layered superconductors is

6S
S¢n

9en_ _
77071'

: (20
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limited by the Josephson interlayjgy;, which is always much 15
smaller thanj4. As a result, the normal core is absent and
the order parametex(r) remains constant everywhere in the
vortex including the core region, which is now defined as a 'y
domain of significant variation of the phaseg(r), where
j(r)~jo. o | [ 0= -0)/(cde/BNNY)
These qualitative features of layered superconductors en- ™
able one to propose the following self-consistent mean-field
description of the vortex based on the exact @¢). Let us
consider the central defect layar<0), wherej(r) is maxi-
mum at a planar weak link embedded in a continuous aniso-
tropic superconductor with the effective penetration depths ;|
Ay and\,. In other words, we take into account the most \/
essential nonlinearity of the Josephson current across the
central layer and replace the rest of the sample by an effec- 05 = = ) = 00
tive medium that provides a linear magnetic screening of
circulating currents outside the core, where the phases
¢on(r) are small and vary smoothly over scales of order FIG. 2. The current distributiong,(y,z=0) andj,(y,z=+0)
Therefore, the equation fop(y) can simply be obtained at the central layer for, =\, .
from Eq. (19) by retaining only the term witm=0 and
replacingh, and X by A\, and\,, respectively. When de- anisotropic superconductor, and E45) gives the known
scribing the structure of the core, one can further simplifyformula b(y)=(¢gd@/dy)l4m\. of local Josephson
Eq. (19) by taking into account that the phagg¢y) sharply  electrodynamics® Notice also that Eq(23) turns out to be
decays over the core side which is much smaller than similar to the equation which describes dislocations in crys-
\¢. In this case the Bessel functidfy(]y—u|/\¢) in Eq. talline potential. This analogy can be quite useful, enabling
(19 changes much more slowly than the derivativethe use of extensive results of dislocation thédty obtain
#?¢(u)/du® and thereby can be replaced by its expansion asolutions which describe vortex structufég?
small argumentKy(r)=In(2/r)—C, whereC=0.577 is the The nonlinear integral equatiof23) has the following
Euler constant® Then the equation fop(y) takes the form  single-vortex solutiot?

03 |

ry

J:(y, 2 = 0)/(cdo/8x*A2A,)

| (e N, (92<p )
7 fy=yy) oz du=sine: (23 e(y)=m+2 tar !

Here, under the logarithm does not affect the solutions ofyhich describes the structure of the Josephson core. The
Eqg. (23), which satisfy the boundary conditiods/dy=0 at  nonlocal screening length defines the characteristic core

) 26)

y=*c. The lengthl in Eq. (23) is size along the layers. For identical layers, E2f) was also
co oL obtained in Refs. 7 and 8 by another method. Substituting
= ° - Z].O , (24) Eq. (26) into Eq.(25) and performig the integration, we find
16m°NNJio  2\yig b(y,2) in the regiony?/\2+2z%/\2<1 in the form

wherej is the critical current density across the defect layer. & 2 | 17 \2
Likewise, one can obtain the field distributitaiy,z) at the b(y,z)=— 0 [|n[y_2+<_+ ) |+2¢ct.
distance <\, ,) from the core in the form AmNghz | [4N; \2N; 2Mhy
b(y,z)=— &Jx In Z—2+ M) +2C a—‘P du The components of the current dengify) are given b

VA= a2 T au 94 P §ity) are given by

@9 ~c b chor, (I +|z)sgriz)

The above expansion of the kerri€}(y—u) implies that at Wearez 8w\, [y2)\§+(|i+ 1z])2\2] (28)
<\, the London screening of the circulating currents does
not affect the structure of the vortex core described by the C b chon y
solution of EQ.(23). In this case the relation between the j,=———= 0%y (29

magnetic fieldb(y,z) and the phase gradieat/dy becomes Amay 8w [yAAg+ (I +[2DAN]T
nonlocal; that is, the fieltb(y) at the pointy is determined
not only by the value ofi¢/dy at the same point but by the
valuesde/du within the domainjy—u|<I as well. Such a
nonlocality results from the coupling of differeNtlayers by
the long-range magnetic field(y,z). In the opposite limit
>\, the phasep(u) changes slowly as compared to the
kernel Kg(y—u), which thus can be replaced by ch j
w8(y—u). In this case Eqs(19) turn into decoupled sine- || =y ~S o
Gordon equations which describe noninteractintpyers in 167°Nzo 2o

wherel , =1\ /\,. The distributions of ,(y,0) andj,(y,0)
on the central layer are shown in Fig. 2. The field distribution
b(y,z) and the current lines corresponding to contours of
constantb(x,y) are shown in Figs. @ and 3b).

Using Egs.(12) and (24), one can write

(30
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(a) lar to the layers. As seen from Eq28) and(29) and Fig. 2,
the valueg (y,ns) andj,(y,ns) are maximum ay=0 and
y=Ym=*(l, +s|n])x,/\,, respectively. Using Eq(30),
we find that the maximum values pf andj, on the layers at

< y>0 are given by
<
3 i
~ S n
= y Ny 1+2|nljylio’
w ‘\\\\“\\\\\\\\\ i y 1+2inijo/jo
Ns i t\\\‘&“\\“\\\ﬁ
=] ‘\‘\\‘\‘\\\:\‘\\\Q‘\R}S‘}‘Q‘Q‘}‘}‘} J ,
ma 0
j7 )= (33

1+2|n|jgljo

Here bothjy™{n) and j7*{n) decrease over the length
|, =sjo/2j,. For identical layers jG=jo), we get
04 T g™ |, =s/28%However, in the presence of the planar defect the
length |, increases ag; decreases, becoming much larger
thans for j,<j,.

Since both andl, are much smaller than, and\,, one

0.4

0al ] can generalize Eq(27) by taking into account the whole
_ region of the screening currents in the vortex. An interpola-
z=+1 . . . .
o2r 1 tion formula which gives correct asymptoticsluofy,z) both
at small and large distances from the core can be written as

01
= bo y> (I +[z)*\ V2
& 0 =" Zoyi= 7

b(x,y) ZW)\Z)\yKO N2 )\5 . (34

At y2INZ+Z2IN;<1, Eq. (34) reduces to Eq(27). In the
-02r 1 opposite case of large distances, the core structure becomes
unimportant. Then one can plt=0 in Eq. (34), which
gives b(y,z) of an anistropicA vortex. Notice that in the
04 U S S vicinity of the vortex core, the self-consistent equatiGd)

-1 -08 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1 Somewhat differS frOm

o y? 22 13
b(y,Z)—mKo )\—54—)\—54—)\—3

1/2

FIG. 3. (a) The field distributiorb(y,z) in theyz plane.(b) The ' (35)

current lines in the vortex-region in the casej§fj,, |=0.1\,, ) ) ) o
and\,/\,=7. which has been obtained in Refs. 1, 8, and 9 within the

framework of a variational approach. This results in a differ-

The phasep, with n#0 can be calculated from the condi- ence ing, with n#0 given by Eq.(31) as compared to the
tion j(ns)=joe,, Wherej,(ns) is given by Eq.(29). From  formulas of Refs. 8 and 9, althougi(y) on the central layer

Egs.(12) and(29), we obtain described by Eq(26) coincides with that of Refs. 8 and 9.
Formulas (27)—(29) allow a clear geometrical
SN A Y interpretatiort® if one takes account of the fact that for

en(Y)= YONZ+ (T, +S|n) A2 (3) |, =0 they describe am vortex. Hence, it follows that at

I, #0, the current lines in the half-plarze>0 coincide with

For 12/\2<y?/\J+2Z2/\}<1, Eqgs.(27)—(29) reduce to the that of a fictitiousA vortex placed at the poinz=—1, .
well-known formulas for the field distribution in ah vortex  Likewise, the fieldb(x,y) for z<0 is given by a fictitious
in an anisotropic superconductor with the penetration depthgortex atz=1, [see Fig. 80)]. Forz>1, , such a field con-
Ay and\,. However, in contrast to aA vortex, the mag- figuration reduces to that of akvortex, and the discreteness
netic fieldb(y,z) and the current density(y,z) in the center  of the superconductor manifests itself only in the core region
of the vortex in layered superconductors remain finite, andz/<I, and |y|<I. Notice that for the planar weak link
Egs. (27)—(31) describe not only the circulating screening (j(<<jo) the distance B between the fictitiou#\ vortices is
currents in the vortex, but also the core region. As it followsmuch larger thans; thus, the effective-medium approach
from EQs.(26), (28), and(29), the phase gradiep/dy and  holds everywhere, including the vortex core. However, for
the component$,(y,0) andj,(y,0) decay over the length identical layers j;=j,), the distance B becomes of the
which determines the core size along the layers. In layeredrder s. Here, the discreteness of the superconductor be-
HTS oxides the core lengthgiven by Eq.(24) can be much comes essential and the structure of current lines in the core
larger thans, sincex >\, andjy<jo. region changes as shown in Ref. 9. In this case, which has

Let us now consider the change of the current-densitypeen considered in detail in Refs. 8 and 9, the above geo-
componentg,(y,z) andj,(y,z) in the direction perpendicu- metrical interpretation ob(y,z) is valid only qualitatively.
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To conclude this section, we discuss the validity of the 2 2l 2|

mean-field approach in which the central layer is described Fm=m Eo()\—) —NO()\—”, (41

exactly and the rest of the sample is replaced by a continuous y©z z z

effective medium which provides a linear magnetic screenyhereEy(u) andNy(u) are the Weber and Neumann func-

ing. As seen from Eq(33), the maximum current density fions, respectively. Equatiotd1) can be simplified if the

across the layers is limited by the valjfe. Thus atj,<jo  core sizel is much smaller than,. Thenu=2I/x,<1 and

one can always linearize the interlayer JOSGphSOI’] currerdne can use the f0||owing asymptotic expansiﬁe§u and
josing,, obtaining the above formulas for the linear London N (u)~ 2[In(uw/2)+ C]/#, whereC=0.577 is the Euler con-
screening with effective penetration depthg and\,. As  stant. Hence

for identical layers, we havg®{n)=j./(1+2|n|), and so

the linear approximation, strictly speaking, becomes invalid ¢(2) A,

since j, across the layers witm#0 remains of ordeyj,. Fn= 1672 s |n(|—) —C}- (42
However, even in this limiting case the maximum values of e

j, across the neighboring layers are numerically smalln order to calculate the Josephson endfgy we substitute
(J7®=jo/3,jol5, ... atn=1,2,...,respectively. The latter Eq. (26) into Eq.(37) and obtain

enables one to use the effective-medium approach near the

vortex core even a,=j. Rig [ ahjol
Fo=lo FJ:%L sir? & dy=""1 (43)
lll. LOWER CRITICAL FIELD H
By addingF,, andF;, we obtain
In order to calculate the lower critical fieldH;
=47F/¢q, we consider the free energy of a single vortex do A,
localized on the planar defed=F,+F;, whereF, is the HC1:47T)\y)\z|:|n T/t (44)

free energy associated with the magnetic field energy and the
kinetic energy of the screening superconducting currents, where y=1-—C=0.423. Ats< Ay,

and(24) to expresH; in the form

one can use Eq412)

F —JJ b?+\2 ab)zﬂz ) Tdydz o
m= oy "M o) [emr 9 o [ [\ib
andF; is the Josephson-coupling free energy, y©z 0
Ai with y;=In2+1-C=1.116. Notice thaH.; depends loga-
_Mo _ rithmically onj}, the maximum supercurrent across the de-
Fo= 2ef (1=cosp)dy, (37 fect layer.

) ] . For identical layersjp=jo), EQ. (45 reduces to that ob-
where ¢ is determined by Eq(26). HereF;, which can be  tained by Clemet al® by another methodnumerical calcu-
regarded as the vortex-core energy, does not contain contiiations ofH,; have been carried out in Ref. 40f ji<jo,
butions from layers with#0. These terms are automati- there are several different regimes. HKj ~jos/A, the
cally tgken into account in the electromagnetic parE gfby core lengtH along the layers becomes of the ordel}\éfand
replacingh, by Ay andA¢ by A,. We calculateFr, by €x- e yortex considered above turns into a Josephson vortex in
pressingb(y,z) in Eq. (36) via ¢(y) by using Eq.(29). In 4 anisotropic superconductor for whiehy; ~ g /A \ . 5
the mean-field approximationm(=0Ap=Ay.Ac=A;) iS 10 increase of, abovej, results in the transformation of
yields the Josephson vortex into an Abrikosov vortex but with a

Josephson core, which can be considered as an intermediate

2
- %o Jm Pyl_yﬂ}ﬁ_@ ‘9_‘de dy stage between the pure Josephson vortex and the Abrikosov
M 64T NN, N, |dypdy, ‘1% vortex with a normal core, which appearsjgt-jo~jq.*°
(38
It is convenient to write Eq(38) in terms of the Fourier IV. VORTEX MASS AND MOBILITY
componentsp’ (k) of the phase gradiente/dy, The above results allow us to calculate the inertial vortex
massM and the viscous drag coefficiept Let the vortex
P2 = |’ (k)|? move along they axis with a constant velocity much
Fm:128W4)\yJ'w\/1+k2)\zdk' (39 smaller than the Swihart velocitg=\ j;w;. This causes the
z

inductive voltaged/,, across theN layers,

For a single vortex the Fourier transform of the derivative of
Eq. (26) gives v :i den _ h_u den
" 2e ot 2e gy’

(46)

o' (k)=2m exp(—1[K|). (40) -
where ¢,(y,t)=¢,(y—vt). As a result, the kinetic energy

Substituting Eq.(40) into Eq. (39) and performing the of the moving vortexMv?/2, is determined by the total en-

integration®® one finds ergy of the electric field stored in tHe-layers*'42
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1 o, h\2 = [dp,) 2 whereR,, are specific resistances of thelayers. By com-
M= U—zz Cn| Vady=|3g >cC ay | 4 paring Egs.(47) and (53), we see thaju can be obtained
" - 47 from the above formulas foM by replacingC, by 1R, .

Hence
whereC, is the specific capacitance of timh contact and 5 ]
en(y) is the static distribution of the phase differences. Sub- _mh i+ 2Ny y ¢ Jo (54)
stituting Eqs.(26) and (31) into Eq. (47), we obtain K= 2e? IRg  sSA,R 2]0
mh2[Cy  2CN\, | o For s<A\y, this takes the form
M= T fl 57 (48)
e 2jo 8mipPoy\,[ 1 f(a)
p=———>7|=—+2a—|, (55
where c Ro R
o whereR, andR are the linear resistivities of the central and
f(a) 12 1 (49) the remaining identical layers. As fdd, the main contribu-
n+a)®’ tion to u comes from the central layer, with the other layers

iving a much smaller contribution, which becomes negli-
ible for jg<jo. By comparing Egs(52) and (55), we see
that the dependence @f uponjg ands coincides with that
8f M. For identical layers Eq(55) reduces to the formula
obtained by Clem and Coffé/except for the difference in

andC, andC are the specific capacitances of the central an(g
the remaining identical layers, respectively. The function
f(«) can be expressed in terms of the Riemann zeta function
£(3,a).2 The asymptotics of («) are

1 f. At jo<<jo, EQ. (54) also reproduces the formula fq
f(— =-{(3)-1=0.052 (j4=]o), (50) which has been obtained within the framework of nonlocal
2] 8 Josephson electrodynamics for a vortex localized at a high-
jc planar defect in a continuous superconducfor.
fla)= , a>1. 51
(@)= 16a2 6D V. NONLINEAR RESISTIVITY

Substitutings given by Eq.(9) into Eq.(48), we can express The linear vortex mobilityw calculated in the previous
M in terms of measured macroscopic parameters. For insection corresponds to small velocities<c, for which the
stance, in the case<\,, for which \,(s) is given by Eq. difference in structure of the moving and static vortex does

(12), Eq. (48) becomes not affectu. In this case the vortex velocity is proportional
to the driving Lorentz force, which implies an Ohmic

877]0950 yhz Jo voltage-current Y-I) characteristic. For large, the struc-

M= c3 [Co+2aCl(a)],  a= 2j (52 ture of the Josephson core can strongly change withhich

in turn gives rise to a nonlineds-l characteristic due to the

As seen from Eq(52), the main contribution td comes dependence gf onv. In this section we consider this effect
from the central layet® The contribution from the layers for a vortex moving along a planar defect with<j, and
with  n#0 is maximum for identical layers ijth a uniform transport currerjt(t) flowing perpendicular
(jo=J0,B8=1/2) and rapidly decreases jsdecreases. For to the defect plane. The phase distributipp(y,t) for the
the casg,=j, andCy=C, Eq.(52) reduces to that obtained moving vortex is therefore described by the set of dynamic
by Coffey and Clenf} except for a difference in the values integral equations represented by Etj7). In the mean-field
of f [f(1/2)=0.113 in Ref. 41 due to the above-mentioned approach they reduce to a single integral equation which de-
difference in the vortex core structure given by E84) as  scribese(y,t) at the central layer:
compared to Eq(35) used in Ref. 41. As a result, the value
of M given by Eq.(52) is smaller than that of Ref. 41 by de |_ * ( Az
~5%. At jy<jo, the vortex mass is entirely determined by Tor " ly—u|/ o
the central layer and linearly increases wijgh, similar to o i i
that of a single higlj; Josephson contact in a continuous Wherg 'B(t):,J(t)/JO is the dlmen5|onle§s transport curren.t
superconductot® For an Abrikosov vortex which corre- density, which generally depends on time. Here we restrict
sponds to strong interlayer coupling, ~ £, Eq. (52) de- o_urs_elves to the overdamp(_eq ca$B>1_ in the absence of_
scribes the electromagnetic contributionMg though in this pinning, neglecting for simplicity the displacement and resis-
case there is a much larger contributiorModue to electrons tive currents through all Iayers but' the defect'one. The latter
localized in the normal cord allows one to use the static effectixg and\, in Eq. (56).

Likewise, one can calculate the viscous drag coefficienf\S Was shown in Refs. 21 and 46, the solution of Ep)
u. Let the vortex move at a constant velocity<c,. Then has the form
one can obtain by equating the total power disspated in the

(92
2du sinp+ 3, (56)

vortex to uv?, which yield§444° o(y,t)=0(t)+m+2 tarm* yI(Li()t) (57)
2 - 2
M=(£ E if (‘9‘10”) dy (53 where the function®(t), u(t), andL(t) obey the following
2e) & RyJ-=\ dy ’ set of ordinary differential equations:
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9+Sin6=ﬁ(t), (58 10.0
L+L cos=l, (59)
8.0 |-
u=—L sind. (60)
Here the overdot implies differentiation with respect to the 60|

dimensionless timet/ 7y, where 7q= ¢o/2mCRyj; is the
Ohmic time constant. Equatiai8) describes the relaxation >
dynamics ofé(t) in an overdamped Josephson junction.
Equations (59) and (60) describe the dynamics of the
Josephson-core width(t) and velocityv (t)=—du/dt, re-
spectively. As seen from Ed57), the shape of the phase
core,p(Y,t) in the overdamped case, remains self-similar for
any ac transport curren(t), since the time dependence 00
manifests itself only in the scaling functiohgt) andu(t).
In addition, Eq.(58) turns out to be decoupled from Egs.
(59) and (60), which makes the nonlinear dynamics of the
vortex fully integrable for any giver(t).*® The distributions
of b(y,zt), jy(y,zt), andj,(y,zt) for the moving vortex
can be obtained from the static E§28) and(29) by replac- ,
ing | by L(t) andy by y—u(t). __ CPhRe  _JoSA. 65
Now let us consider a particular case of a dc current 8mhy\a(H)jg Oj(’) any
(6=0, 6=sin"'p) for which Egs.(58)-(60) become alge-
braic. Then the core width(B) and velocityv (3) are given

()/R

20

0 02 04 0.6 0.8 1
ili

FIG. 4. The nonlineaW-I characteristic described by E(4)
for the overdamped case.

As seen from Eq(64), the nonlineaV(j) has an upward
curvature(Fig. 4). The field dependence of the resistivity

by R(H) is mostly determined bwy(H). If H.; for the defect
I layer is much smaller than the bqulc’l, the lattice spacing
L= , (61 a~\NyIn[Hg/(H=H)] for H~H¢; and a= ¢¢/2\H for
1-p° H. <H<HY, . In the latter case, we obtain the linear field
dependenceRxH, similar to that of the Bardeen-Stephen
vof model#®
v= 152 (62 Now we consider the periodic ac sigrj&t) = j ,coswt for
the quasistatic regime r<1, for which one can substitute
where j(1) in Eq.(62). Then a simple integration of E¢62) yields
) the following time dependence of the vortex displacement
oo C Ro 63 u(t):
07 8mAN,’
These formulas generalize those obtained in Refs. 21 and 46 vo jaSinot+ Vj, —jZcodot
for high-j. Josephson contacts in isotropic superconductors ut)=—In : (66)
to the case of layered materials. As seen from &), the @ \/ﬂ

core widthL increases with, diverging atj =, [this diver- . ] o o

gence is eliminated by a nonzero interlayer capacitades Th|s_ _formula describes periodic oscﬂla’glons of_the_ vortex
(Ref. 21)]. Unlike the Lorentz contraction of the JosephsonPositionu(t) from —up, to uy,. The amplitudeur, is given
vortex for low dissipatior(see, e.g., Ref. 35the increase of by

L(v) is a specific feature of the overdamped cHse turn, o
the dependence of the core widthon v gives rise to a Vo, JoT]a
nonlinearV-I characteristic of a layered superconductat if Um= 2w nj(’)—ja'

is parallel and is perpendicular to the layers.

At low magnetic fields, for which the Josephson cores ofFor small ac signal§,<j,, the valueu,=jvo/wjq lin-
neighboring vortices do not overlap, the voltageat the early increases withy, and is inversely proportional to the
defect layer can be obtained from Faraday’s law, namelyj, of the defect layer. Notice that sin%ocjé/zl the ampli-
V=g¢ov/ca(H). Herea(H)>1 is the spacing between vor- tude u,, decreases as the anisotropy factop/\ is in-
tices andv(j) is given by Eq.(62). Hence theV-l charac- creased.

(67)

teristic can be written in the form Using Eq.(62), we can now calculate the mean power
dissipated by the oscillating vortexQ= ¢o(v(t)j(t))/c,
Rj where ( ) stands for the time averaging over the period
V=Tanoe (64 27/w. We obtain

where the linear resistivitR is given by Q=Qo[K(Bo) —E(Bo)]- (68)
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Here Qo= 2¢gvoj /7, andK(B,) andE(By) are complete  Abrikosov vortices. This can considerably facilitate tempera-
elliptic integrals of the first and second kinds, respectivelyture independent quantum flux creep in HTS oxides.

where By=j,/j4 is the modulus oK andE.* For j,<j}, The above features may be essential for the interpretation
the dissipated poweR(j,)= dovoi 5/201'6 increases qua- of current transport along the axis in HTS oxides, which

dratically with j,, and diverges logarithmically aj, ap-  often contain numerous planar defects parallel to afh;e
proacheg .46 planes(stacking faults, intergrowths of lo; phases, etg>

o Because of the short coherence length alongcthgis, these
VI. CONCLUSION defects can strongly r(_adl_J_ce the logglas compared t9q
and thus become a limiting factor for theaxis current
We have considered the Abrikosov vortex with aniso-transport, now determined by vortex dynamics and pinning
tropic Josephson core localized at a planar defect in layerealong the defects. In this case the measuremex{ pf along
superconductors. We propose a self-consistent mean-fielde ¢ axis enables one to extraB(T) and j(T), whose
approach, which enables one to calculate the vortex structut@mperature dependence can clarify the character of the su-
analytically, including the core region. We have obtainedperconducting coupling across the defects. For instance, at
formulas for the lower critical fieldd.;, the vortex mass j<j/, theV-I curve is linear, which allows one to obtain the
M, and the nonlinear mobility.(v), which take into account R (T) dependence from E@65). At the same time, by mea-
both the discreteness of the superconducting matrix and thﬁjringV(j) atj=j}, one can extragt, with the help of Eq.
parameters of the defect layer. The absence of the norm@éAf)_ Notice here that the character of théj) atj=j, can
core considerably reduces;,, M, andx compared with an change significantly withT because of strong temperature
Abrikosov vortex. . dependence of the McCumber parameter »(T)
The reduced ., leads to preferred flux penetration along —CoRow,. As a result, a transition occurs from the over-

pla?ar dheft'actsl, WT.'Ch(’j fotr tﬁxaénﬁ)le,t can dmanlé%i‘tﬁltszlf a%amped regimey>1 at T=T, to the underdamped regime
vortex chains focajized at the defects in decorationan <1l at T<T. due to a strong decrease of the density of

_ontic4p-51 : ;
magneto Opt'Cé? experiments. This can be due to _the normal quasiparticles which provide the ohmic dissipation in
strong deformation of the vortex core caused by weak inter-

. ; Josephson contacts. In turn, the change () strongly af-
layer coupling and the smglf, across the defect. As a result, fects the form ofV/(j), which has an upward curvature at
the core becomes highly anisotropic, its sizaong the lay- ’

>1 [see Eq(64)] and a downward curvature gt<1 typi-
ers essentially exceeding both the transverse core ldngth i [ q(64)] ? yp

. ; . VETS 9N cal for underdamped Josephson contAtts.
and the interlayer spacing. This can give rise to a highly

anisotropic vortex pinning forcewith respect to the current-

flow direction. The component of the pinning force parallel ACKNOWLEDGMENTS
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